Solving Nonlinear Eigenvalue Problems using an Improved Newton Method
نویسندگان
چکیده
Finding approximations to the eigenvalues of nonlinear eigenvalue problems is a common problem which arises from many complex applications. In this paper, iterative algorithms for finding approximations to the eigenvalues of nonlinear eigenvalue problems are verified. These algorithms use an efficient numerical approach for calculating the first and second derivatives of the determinant of the problem. Here we present and examine a technique for solving nonlinear eigenvalue problems using Newton method. Computational aspects of this approach for a nonlinear eigenvalue problem are analyzed. The efficiency of the algorithm is demonstrated using an example. Keywords—nonlinear eigenvalue problems; Newton method; LU-decomposition; refined eigenvalues
منابع مشابه
The Sine-Cosine Wavelet and Its Application in the Optimal Control of Nonlinear Systems with Constraint
In this paper, an optimal control of quadratic performance index with nonlinear constrained is presented. The sine-cosine wavelet operational matrix of integration and product matrix are introduced and applied to reduce nonlinear differential equations to the nonlinear algebraic equations. Then, the Newton-Raphson method is used for solving these sets of algebraic equations. To present ability ...
متن کاملSolving a Class of Nonlinear Eigenvalue Problems by Newton’s Method
We examine the possibility of using the standard Newton’s method for solving a class of nonlinear eigenvalue problems arising from electronic structure calculation. We show that the Jacobian matrix associated with this nonlinear system has a special structure that can be exploited to reduce the computational complexity of the Newton’s method. Preliminary numerical experiments indicate that the ...
متن کاملSolving Nonlinear Eigenvalue Problems Using A Variant of Newton Method
In this paper, iterative algorithms for finding approximations to the eigenvalues of nonlinear algebraic eigenvalue problems are examined. These algorithms use an efficient numerical procedure for calculating the first and second derivatives of the determinant of the problem. Computational aspects of this procedure as applied to finding all the eigenvalues from a given complex-plane domain in a...
متن کاملA Jacobi-Davidson method for two-real-parameter nonlinear eigenvalue problems arising from delay-differential equations
The critical delays of a delay-differential equation can be computed by solving a nonlinear two-parameter eigenvalue problem. The solution of this two-parameter problem can be translated to solving a quadratic eigenvalue problem of squared dimension. We present a structure preserving QR-type method for solving such quadratic eigenvalue problem that only computes real valued critical delays, i.e...
متن کاملInexact Newton Methods Applied to Under – Determined Systems by Joseph P . Simonis A Dissertation
Consider an under-determined system of nonlinear equations F (x) = 0, F : IR → IR, where F is continuously differentiable and m > n. This system appears in a variety of applications, including parameter–dependent systems, dynamical systems with periodic solutions, and nonlinear eigenvalue problems. Robust, efficient numerical methods are often required for the solution of this system. Newton’s ...
متن کامل